The Truth About Bioplastics: 10 Bioplastic Myths Busted!

Corn to PLA Cup

Bioplastics, PLA-lined coffee cups and compostable packaging have been in the spotlight with much confusion surrounding their end-of-life and what they are. While it’s great to see bioplastics in the media, the inaccurate reporting is confusing consumers and underestimating the potential benefit these materials can have in diverting organic waste from landfill cleaning up recycling streams and reducing the amount of plastic polluting the world’s oceans.

In this article, we will debunk 10 of these myths and misconceptions about bioplastics.

Like most myths, they are inspired by reality but are mixing up fact and fiction and, in this case, are ultimately unhelpful to a budding industry that is solidly progressing toward a resource-efficient and sustainable future.

corn on the left tile and black oil on the rightcorn on the left tile and black oil on the right

Myth 1:

Bioplastic is just a biodegradable plastic


Bioplastics are a large family of different materials. Plastic material is defined as a bioplastic if it is either biobased, biodegradable, or features both properties.

Biobased’ means that the material or product is derived from biomass (plants such as corn, sugarcane, or cellulose), but it doesn’t necessarily mean that it's biodegradable. Some common plastics like PET can be made from a renewable feedstock for instance. Renewable PET (also called “green PET”) and conventional oil-based PET are chemically identical and are not biodegradable.

Biodegradation is a process during which microorganisms that are available in the environment convert materials into natural substances such as water, carbon dioxide, and compost (artificial additives are not needed). The process of biodegradation depends on the surrounding environmental conditions (e.g. location or temperature), on the material and on the application. The term “biodegradable” can be misleading and should be used carefully as it doesn’t imply specific timeframes or conditions. That’s why precise claims that can be verified, such as “compostable” are more accurate and transparent. 

Compostable describes materials that are suitable for microbial treatment at the end of life in a composting environment, whether commercial or in the home. Products or materials that pass the required standard for such microbial treatment in these environments may be verified as compostable according to the requirements of the Australian Standards AS 4736-2006 (biodegradable materials suitable for commercial composting) and Australian Standard AS 5810-2010 (biodegradable plastics suitable for home composting).

biobased, non biodegradable, biodegradable and fossil-based diagrambiobased, non biodegradable, biodegradable and fossil-based diagram

Biodegradable plastics, also called “oxo-degradable plastics”,  are conventional plastics made with fossil fuel and an additive which allegedly allows the rapid degradation of the product. The main problem with these claims is that there is no independently verified conclusive proof that the plastic will completely biodegrade. They are actually known to create small fragments called microplastics, which, when ingested by animals, can eventually make their way up the food chain. All they do is offer consumers and brand owners a false sense of sustainability.

Learn how some countries are banning some oxo-degradable plastics.

 image of a compost bin image of a compost bin

Myth 2:

All bioplastics are compostable


Not all bioplastics are compostable. The bioplastic we use in BioPak packaging is certified compostable to AS4736 or EN13432, the Australian and European industrial compostability standards. This means it will completely break down in a compost environment within a defined timeframe and leave behind no toxic residues.

Industrial compost facilities harness a natural reaction to process organic waste into compost. Organic waste naturally generates heat once microorganisms start breaking it down. In a commercial compost facility, the temperature and humidity are closely monitored and controlled to optimize and speed up the process. This allows bioplastics that are certified industrially compostable to break down within 12 weeks. Composting is Nature’s way of recycling.

Learn more about the different types of composting.

an image of a commercial compost pilean image of a commercial compost pile

Myth 3:

Bioplastics can contaminate organic waste for commercial composting


Certified compostable bioplastics do not decrease the quality of the compost created. All BioPak compostable packaging has been certified to AS4736 or EN13432, which means that our products have been independently and completely tested (including inks, glues etc.) for acceptance in suitable commercial compost facilities. Certification gives the composters the confidence that the organic waste they’re accepting will not contaminate their feedstock and will break down within their processing times.

The biggest potential area of impact for compostable plastics is in foodservice. From coffee cups to sandwich packaging to takeaway containers, the packaging and the food waste can be composted together. In addition to its undisputed role in increasing food waste collections, compostable packaging mainly biodegrades into carbon and contributes to the composting process by delivering energy and acting as a bulking agent.

The BioPak Compost Network is proof that organic recycling of foodservice packaging is scalable, practical and commercially viable. There is a significant opportunity to collect and compost the estimated 900,000 tonnes of organic waste the foodservice and hospitality industry generates. Together with our customers and partners, we’re proving the model in order to empower councils, and waste management industries to step up.

Learn more about how the Australian Organic Recycling Association (AORA) has publicly endorsed certified compostable bioplastic packaging.

an image of a conveyor belt an image of a conveyor belt

Myth 4:

Bioplastics contaminate mechanical recycling streams


Biobased plastics (see Myth #1) are chemically identical to their fossil-fuel based version, and they can be recycled together.

Compostable bioplastics can technically be recycled via chemical or mechanical recycling. However, due to their relatively low share of plastic volumes, there are only a couple of recycling facilities globally that have the ability to recycle them.

Compostable bioplastics do not contaminate non-bioplastic recycling waste streams. Material Recycling Facilities use sophisticated sorting technologies and treatment and compostable bioplastics are easily identified and separated if they are mixed with other materials. Industrial composting is the best end-of-life option for certified compostable bioplastics such as PLA.

Learn more about the Compost Network.

 image of landfill image of landfill

Myth 5:

Bioplastics biodegrade in landfill


There is no oxygen in the landfill and as a result, waste biodegrades very, very slowly. Organic waste such as food waste does end up breaking down, releasing methane, an extremely powerful greenhouse gas.

Compostable bioplastic like PLA is considered to remain inert in a landfill, due to this lack of oxygen. Industrial composting is the best end-of-life option for certified compostable bioplastics such as PLA.

Learn more about food waste in landfill.

 image of plastic waste on a beach image of plastic waste on a beach

Myth 6:

Bioplastic is just as harmful to the environment as plastic


Bioplastics do not rely on the depletion of a finite fossil source of energy like conventional plastics do. Fossil fuel extraction and the plastic industry are linked to climate change and significant pollution at all stages of production.

The current generation of bioplastics is produced using renewable, abundant and cost-effective sources of plant starch such as corn, sugar beet, cassava and sugarcane. Scientists are working on using algae, bacteria, carbon dioxide and methane gas as next-generation feedstocks that will further reduce the environmental impact of these materials.

Learn more about next-generation feedstocks for bioplastics.

 image of corn fields image of corn fields

Myth 7:

Bioplastic production depletes feedstock and diverts land from food production


Production of bioplastic has little to no effect on food prices or supply. The land used to grow the renewable feedstock for the production of bioplastics amounted to approximately 0.82 million hectares in 2017, which accounted for less than 0.02% of the global agricultural area of 5 billion hectares, 97% of which were used for pasture, feed and food. Despite the market growth predicted in the next five years, the land use share for bioplastics will remain around 0.02%. 

There are also many opportunities for alternative feedstock – including using an increased share of food residues, non-food crops or cellulosic biomass, methane gas and CO2 – that could lead to even less land use demand for bioplastics than the amount given above.

Learn more about food and bioplastics.

 image of DNA image of DNA

Myth 8:

Bioplastics contain GMOs


The use of GMO crops is not a technical requirement for the manufacturing of any bioplastic commercially available today. If GM crops are used, the reasons lie in the economic or regional feedstock supply situation. If GM crops are used in bioplastic production, the multiple-stage processing and high heat used to create the polymer removes all traces of genetic material. This means that the final bioplastic product contains no genetic traces. The resulting bioplastic is therefore well suited to use in food packaging as it contains no genetically modified material and cannot interact with the contents.

We use Ingeo™ bioplastic made by Natureworks which is certified GMO-free by Eurofins GeneScan. Eurofins is recognised by both government and NGOs as the leading authority for testing food, feed and raw materials.

Learn more about the Eurofins certification.

 icon of reusable cup(s) like this against a green background  icon of reusable cup(s) like this against a green background

Myth 9:

Reusables are the only eco-friendly solution to solve the world's plastic pollution


While we wholeheartedly support reusables as a solution to single-use plastic consumption, we also recognise it’s not always a practical option. When reusable logistics are not cost-efficient or cause hygiene concerns, compostable single-use foodservice disposables are the best solution – providing a safe, hygienic and cost-effective way to serve food and beverages to large numbers of people.

Learn more about composting at large events.

an image of a compost pile in someone’s handan image of a compost pile in someone’s hand

Myth 10:

There's no point creating compostable packaging when commercial composting infrastructure isn't yet widely available.


The classic ‘chicken and egg’ adage! Waste management industries are the end of the line in our linear consumption economy. Innovation happens at the beginning of the product life-cycle and flows down the line to the waste management industries.

When PET bottles were first introduced they were not recycled and the same can be said for aluminium and metal cans. Only when sufficient demand for a raw material exists does recycling make commercial sense.

Sometimes, we have to lead by example. That’s why we have launched the Compost Network – working with commercial composting facilities in Australia and New Zealand to make commercial composting infrastructure for organics and compostable packaging more readily available. Together with our partners, we are proving the composting infrastructure model as a case study for local councils and waste collection contractors to adopt and make part of the journey towards zero waste. In fact, in the last 12 months, an increasing number of councils have followed suit and introduced food waste collections that include certified compostable packaging. 

And it’s good for the local economy too, according to the Australian Organics Recycling Association, one job is supported for every 1,550 tonnes of organic material recycled in Australia. That means that if we can capture the 900,000 tonnes of organic waste the foodservice industry in Australia produces annually, we can create 581  jobs locally and create much-needed compost for our farmers to produce our food. 

Watch this history of soil video by Kiss the Ground.

Learn more about how our solution fits the circular economy.